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An Efficient Eulerian-Lagrangian Method for Solving Solute
Transport Problems in Steady and Transient Flow Fields
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A computationally efficient, yet relatively simple Eulerian-Lagrangian method is proposed for
solving the one-dimensional convection-dispersion solute transport equation assuming a steady or
transient velocity field. The method uses a modified single-step reverse particle tracking (MSRPT)
technique to handle steep concentration fronts. The scheme utilizes two weighting factors to control
the movement of particles during a backward tracking step. One weighting factor greater than unity is
used in the upstream region of the convection front, while another weighting factor less than unity is
taken in the downstream region. The two factors were related empirically to the grid Peclet and
Courant numbers. The MSRPT technique is carried out only within the concentration plume at each
time step. For transient flow fields, the weighting factors were determined using an automatically
adjustable procedure based on mass balance errors. The MSRPT method maintains the advantages of
the traditional single-step reverse particle tracking (SRPT) procedure, i.e., producing efficient and
oscillation-free calculations, but circumvents numerical dispersion introduced by SRPT. A large
number of tests against analytical solutions for one-dimensional transport in uniform flow fields
indicate that the proposed method can handle the entire range of Peclet numbers from zero to infinity.
Numerical tests also show that the MSRPT method is a relatively accurate, efficient and mass-
conservative algorithm for solute transport in transient flow fields. The Courant number at present
cannot exceed 1. The MSRPT approach was found especially useful for convection-dominated
problems; in fact, an exact numerical solution may be obtained with MSRPT for pure convection.

Convection-dispersion type equations are being widely
used to model solute transport in soil and groundwater.
Owing to the particular combination of hyperbolic and
parabolic terms, serious difficulties are often encountered in
obtaining accurate numerical solutions of these equations. A
variety of numerical schemes have been developed to deal
with these difficulties, including an extensive number of
Eulerian methods using fixed grid systems, and Lagrangian
approaches involving moving coordinates. There is now a
growing trend to combine the Eulerian and Lagrangian
methods [Garder  et al., 1964; Leith, 1965; Heinrich et al.,
1977; Konikow and Bredehoeft, 1978; Varoglu  and Finn,
1978; Cheng et al., 1984; Khaleel and Reddell,  1985; Fuji-
nawa, 1986; Dimou and Adams, 1991; Leonard, 1991;
Galeati et al., 1992; Huang  et al., 1992, among others].
Eulerian-Lagrangian methods treat the convection part of
the transport problem using a Lagrangian formulation in a
fixed Eulerian grid, while the dispersion term is treated by
either an Eulerian or a Lagrangian formulation. As a typical
example, Neuman and Sorek [1982]  decomposed the con-
centration field into two parts, one controlled by pure
convection, the other by dispersion. The convection part
was handled with the help of moving particles, while the
dispersion problem was solved using finite elements on a
fixed grid. Neuman [ 1984] subsequently presented an adap-
tive Eulerian-Lagrangian finite element method for solving
the convection-dispersion equation. The method is capable
of dealing with the entire range of Peclet numbers from zero
to infinity. However, the scheme is quite troublesome to
implement and time consuming to execute because of the
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need to continuously track the front using numerous particles
at each time step. In a related approach, Yeh [1990]  used the
Eulerian-Lagrangian method with a zoomable  (or adjustable)
hidden fine-mesh approach to resolve numerical difficulties.
While this scheme reduces or virtually eliminates numerical
dispersion and oscillations, the process of zooming and refining
the elements at each time step is not straightforward in terms of
its practical implementation. Also, the large number of ele-
ments needed for this approach requires excessive amounts of
computer memory and execution time.

In the adaptive Eulerian-Lagrangian finite element method
used by Neuman [ 1984], the convective components of steep
concentration fronts were tracked forward with moving
particles around each front. Away from the fronts, however,
the convective problem was solved with a single-step re-
verse particle tracking (SRPT) method. The SRPT technique
requires much less computer time and storage than contin-
uous forward particle tracking. Unfortunately, one draw-
back of the SRPT method is that it introduces some numer-
ical dispersion near sharp concentration fronts.

The objective of this paper is to present a simple and
efficient particle tracking technique to solve the convection-
dispersion equation. A modified single-step reverse particle
tracking (MSRPT) method is used to deal with convection-
dominated transport problems. We shall show that MSRPT
maintains the advantages of the traditional single-step re-
verse particle tracking procedure, but eliminates numerical
dispersion introduced by SRPT. Simulation results based on
the scheme will be compared with analytical solutions as
well as numerical results obtained with other methods.

GENERAL FORMULATION

Transport of miscible components in a one-dimensional
transient flow field is described with the convection-
dispersion solute transport equation
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i3Rg=; eoz -0,;
i 1 where L is the solution domain. Neuman and Narasimhan

(1) [1977],  among others, showed that parabolic problems such
as (10) are more effectively solved by implementing a mass

where c is the solution concentration, I is time, x is distance, lumping scheme in which the first term of (10) is approxi-

D is the dispersion coefficient, u = q/O  is the pore water mated by
velocity, q is the Darcian fluid flux, 0 is the volumetric water
content, and R is a retardation factor accounting for linear

I

dci

equilibrium sorption; i.e., L

f3R;ip;dx=;j;
I

BR~i dx (11)
L

R = 1 + pk/O (2) The Lagrangian derivative may be approximated by [Neu-

in which p is the porous medium bulk density and k is an
man, 19841

empirical distribution constant. The equation will be solved dc. ck+’
here subject to the initial and boundary conditions

I I - ci

dt= At
(12)

c(x, 0) = c(J (3)
where Fi is the “convective concentration” of node i to be

8C discussed in detail in the following section, and c,!‘+’ is the
-/3D-+v(c-CJ=Oax inflow boundary (4) concentration of node i at tk+, . Following the procedure of

Neuman [1984],  we substitute (11) and (12) into (10) and use

ac the linear basis functions to eventually obtain a system of
-zz 0 linear equations for the concentration at time step tk+l =
ax

outflow boundary (5)
tk + At aS fOllOWS:

where Co and C, are prescribed constant concentrations,
while p controls the type of boundary condition imposed at (13)
the inlet position (p = 0 for a prescribed concentration

ck+r} = [G] + F (~1

condition and /3 = 1 for a prescribed flux condition). where
By using the Lagrangian derivative

(6)
Eij=

I L

,Dzzdx (14)

where v* = v/R,  (1) can be rewritten in the Lagrangian form
as

Hi = -qi inflow boundary
(15)

Hi = 0 outflow boundary

(7)
wjj= 6ij ORq; dx (16)

where c no longer represents the concentration at a point in
J L

space and time, but rather the concentration of a fluid
particle moving along the characteristic path described by

Gi = -qiCt inflow boundary
(17)

the equation Gi = 0 outflow boundary

dxldt = v* (8) The global matrices Hi and Gi in these equations were

The Lagrangian formulation of the governing equation elim-
derived assuming /3 = I (i.e., for prescribed flux conditions).

inates the convection term so that the equation takes on a
When p = 0, c is known at the inflow boundary.

purely parabolic appearance which can be solved efficiently
The relative accuracy of the different schemes will be

with a finite element method.
evaluated, in part, by using the mass balance error (ME) as

Let us define the finite element approximation of the
follows:

solute concentration at location x and time t as ME = lOO(C,  - C,)IC,(%) (18)

N

c(X, t) = 2 ci(t)9i(X)

i=l

with

(9)
Cm = Cini + Ci, - Co”, (19)

where N is the number of nodes in the solution domain, where C,, Cini, Gin, and C,,, are the amounts of solute

vi(X) represents the linear shape function, and Ci is the stored in the profile, initially present in the profile, cumula-

concentrat ion at  node i (i = 1, * * * , N). Applying the tive input, and cumulative output, respectively.

Galerkin procedure to (7) and incorporating (9) leads to

I, [,R ~-~ (eD 3]~i dX=O (10)
M ODIFIED SINGLE-STEP REVERSE

PARTICLE TRACKING

The convective concentration, c in (12), may be computed
i= 1, 2, ***,  N  using a single-step reverse particle tracking (SRPT)  tech-
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nique. That is, a fictitious particle from each node i is sent
backward to the point

x; = xi -
I

fk+l
u* dt (20)

tk

during each time step. This means that a particle leaving xi
at tk will reach grid point location Xi exactly at tk+, . The
convective concentration is subsequently computed by the
finite element approximation; i.e.,

N

c(Xi,  tk) = C(X:, tk) z c c(Xj,  tk)‘Pj(X:) (21)

j=l

This technique works well in regions where the concentra-
tion gradients are small; however, the method introduces
artificial dispersion near sharp concentration fronts.

To eliminate the numerical problem, a modified single-step
reverse particle tracking (MSRFT)  technique is formulated
to compute the convective concentration. First, the single-
step particle tracking method is carried out within a certain
region determined by

xt = x0 + x, + xd (22)

where x0 is the initial center location (at t = 0) of a sharp
front, and x, and xd are the travel distances related to
convection and dispersion, respectively; i.e.,

I

t
x, = u* dt (23)

0

I 1

l/2

xd = 4 ’ D dt (24)
0

The term x0 + x, in (22) indicates the center location of the
sharp front at time t, while (24) is an empirical expression
based on numerical experiments. For elements within xt, the
location at tk of a paI?iCk  which reaches Xi at tk+l  iS

computed by

fkflx;=xi_
I

w,u* dt
It

x < x0 + x, upstream region (25a)

I

fkilx; = xi - w2v*  dt
ft

x0 + x, 5 x 5 xt downstream region (25b)

where w , and w2 are weighting factors for the upstream and
downstream regions, respectively. Next the convective con-
centration is computed by (21) using the calculated xi.

The weighting factors wt and w2 were found to change
with different flow velocities, dispersion coefficients, and
space and time discretizations. They were related empiri-
cally to the grid Peclet number (Pe) and Courant number
(Cu) as follows:

w1 = 1 + (l/Cu - 1) exp [-4l.O2(1/PeC~)‘.‘~~]

lIPeCu  IO.05 (26a)

- cu = 0.5
A-A Cu = 0.25
H Cu = 0.125

l/Pe

0.0 0.2 0.4 0.6 0.8 1 .o

l/Pe

Fig. 1. Relationships between (top) w1 and l/Pe and (bottom) w2
and l/Pe for varying values of Cu.

w1 = 1 + (l/Cu - 1) exp [-2.63(1/PeC~)‘.~‘~]

lIPeCu > 0.05

w2 = 1 - (1 - Cu) exp [-2.9(C~lPe)~.‘~]

where

Pe = u*AxlD Cu = v*AtlAx

(26b)

(27)

(28)

Equations (26) and (27) were obtained by carrying out a large
number of simulations for a steady flow field using different
values for Pe and CU. For each pair of Pe and Cu values, w,
and w2 were adjusted by minimizing the mass balance error,
and by minimizing deviations between the numerical and the
available analytical solutions. Results of (26) and (27) are
currently limited to C u  s 1. Since the weighting factors
depend only on the grid Peclet and Courant numbers and are
computed for each grid, the MSRPT method can be used for
problems with both uniform and varying element sizes.

Figure 1 shows families of curves of wt and w2 versus
l/Pe for different values of Cu. The weighting factor w, is
greater than unity, and increases as Pe increases and/or C u
decreases. On the other hand, the weighting factor w2 is less
than unity, and increases as Pe decreases and/or Cu in-
creases. Figure 2 presents similar relationships between w,
and w2 and 1/Pe for Cu = 0.25. Notice that when Pe + 00,
Wl = l/Cu, and xd = 0. This means that in the region x 5
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Fig. 2. Dependency of wr and w2 on l/Pe for Cu = 0.25.

xi, i.e., within x0 + xc, the location xi of a moving particle
beginning from node i is given exactly by

X: = xi - AX = Xi-1 (29)

In other words, the moving particles coincide perfectly with
the nodes of the fixed grid system, and hence

~(Xi, tk)  = C(X:, tk)  = C(Xi-I, tk) (30)

Since there is now no interpolation error for c, exact results
can be obtained for the pure convection problem. For
dispersion-dominated problems, both wr and w2 approach
unity (Figure 2), and subsequently the MSRPT method
reduces to the traditional SRPT technique which provides
sufficiently accurate solutions for such problems [Neuman,
1984]. We note that the SRPT method was only used to
compute the convective concentration of node i outside the
region of x f.

For transient problems the flow velocity and dispersion
coefficient change with time and space, in which case the
Peclet and Courant numbers become functions of time and
spatially dependent. We introduced a correction factor a,
with the weighting factors wr and w2 in (25) to account for
the transient effects; i.e.,

w\(t) = UfWl Wi(t) = urw2 (31)

where w 1 and w2 are computed with (26) and (27) as before.
The correcting factor a, in the numerical scheme is deter-
mined using an adaptive procedure which depends on the
value of the mass balance error. The procedure consists of
two steps. First, the initial value a0 of a, at t = 0 is set equal
to unity. Next, at each time step, the mass balance error
(ME) is computed. If ME is within a preset tolerance (e.g.,
IME]  < 0.l%), the value of a, is kept unchanged; i.e., u,+~
= a,. Otherwise, a,,, is set equal to 0.95 a, if ME < 0, and
to 1.05 a, if ME > 0.

In addition to the global mass balance error, the relative
accuracy of the different schemes are also compared in terms
of the sum-squared error E defined as

E(t)  = i [Ci(t)  - CT(t)12
i = l

(32)

where iV is the number of nodes, CT is the simulated
concentration, and Ci is the presumed correct solution of the
concentration at node i. For steady state flow, Ci will be
evaluated using analytical solutions. No useful analytical
solutions exist for problems of solute transport in transient
flow fields. For these problems we used as our correct
solution simulated results obtained with a finite element
scheme which assumed very fine grid and time discretiza-
tions.

EXAMPLES

Problem 1 deals with the solution of an advancing concen-
tration front. The analytical solution of the transport equa-
tion in a uniform flow field, i.e., for

(33)

subject to

c(x, 0) = 0 OSX<~

c(0, t) = 1 t>O

E (00, t) = 0 t>O

(34)

(35)

(36)

is given by [van Genuchten and Alves,  1982]

1 I 1 x-ut 1
c(x, r) = 2 [erfc  L2(DRt)  1121

+  exp (:I erfc [,~h,:,:lJ (37)

which, for the limiting case when D -+ 0, reduces to

c(x, t) = 1 x < vt
(38)

c(x, t) = 0 otherwise

Three simulations were carried out with the MSRPT
scheme. For case 1, the following parameters were used:
Ax = 200, At = 100, t = 9600, u = 0.5, R = 1, and D =
0 (Pe = a), and assuming a domain of 0 5 x 5 12800 (any
consistent set of units may be used for these parameters).
Cases 2 and 3 were the same as for case 1 except for D which
was set at 2 (Pe = 50) and 50 (Pe = 2), respectively. Figure
3 displays the calculated concentration profiles for the three
cases. Results obtained with the SRPT and MSRPT methods
are compared with the analytical solution. The calculations
show that over the whole range of 0 I Pe < 00, the MSRPT
eliminates both numerical oscillation and artificial disper-
sion. The SRPT method on the other hand produces signif-
icant numerical dispersion, except for relatively small Pe
values. Figure 4 further compares results obtained with
MSRPT, the finite element method (FEM), and the upstream
weighted method (UWM) [Heinrich et al., 1977] against the
analytical solution. The upstream weighted method uses
nonlinear weighting functions so that greater weight is
placed on variables associated with the upstream node of an
element. The parameters used for this example were the
same as those of case 1 except for D = 1 (Pe = 100). Notice
the excellent results obtained with the MSRPT method. By
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comparison, the FEM exhibits numerical oscillation, while
the computations using UWM show extensive numerical
dispersion.

Another class of problems amenable to indirect solution
by the MSRPT is the initial value problem with a “step
function” type initial condition. Problem 2 again concerns
one-dimensional transport in a steady flow field, but now
with the initial and boundary conditions given by

c(x, 0) = 1 OlX<X,

c(x, 0) = 0 x 2x1

c(0, t) = 0 t>O

1 . 2
1

0

0.8

0.6

D=2

Pe = 50

0 4000 8000 12000

1.2

1 .o

0.8

X

- Analytical
o M S R P T

- - - -  SRPT

v 0.6

0.4

(39)

(40)

Fig. 3. Concentration profiles computed with the modified sin-
gle-step reverse particle tracking method, the single-step reverse
particle tracking method, and the analytical solution for u = 0.5,
R = 1, and (top) D = 0 (Pe = m), (middle) D = 2 (Pe = 50), and
(bottom) D = 50 (Pe = 2).

- Analytical
o M S R P T

A-A UpStWOm
i--s FEM

0.8

o 0.6

i
1 I . I ’

4 0 0 0  8000 12000

X

Fig. 4. Comparison of concentration profiles computed with the
modified single-step reverse particle tracking method, the finite
element method, the upstream weighted method, and the analytical
solution for v = 0.5 and D = 1 (Pe = 100).

The exact solution for a semi-infinite profile is given by [van
Genuchten and Alves, 1982]

c(x, t) =f {erfc [‘:~~~);~‘]

+ exp (vxlD)  erfc [(~~~)~~t]} (41)

The initial condition (39) represents a unit step function near
the inlet boundary. The center of the plume at time t is
located at x, = 0.5~~  + ut. MSRPT was used to only
compute F for nodes in the half region of the plume from the
center to the extended area, i.e., between 0.5~~  + vt and
x, +  vt + 4(Dt)“2. The convective concentrations of the
nodes were subsequently mirrored to the other half region,
i.e., between vt - 4(Dt)‘12 and 0.5~~  + vt. Based on the
mirrored concentration values, the convective concentration
of the nodes in this region was calculated by linear interpo-
lation. Using Ax = 200, At = 100, t = 9600, v = 0.5, D =
0.2, R = 1, and x1 = 1200, we simulated solute movement
in the same domain as problem 1, utilizing both SRPT and
MSRPT. The results are compared in Figure 5 with the
analytical solution. Again, MSRPT matches the analytical
solution almost exactly, whereas SRPT leads to serious
numerical dispersion.

Problem 3 involves the infiltration of water and a dissolved
solute in an initially solute-free soil profile. The problem was
designed to show the performance of MSRPT when simulat-
ing solute transport during transient unsaturated water flow.
For this example we used MSRPT to solve (1) subject to the
same initial and boundary conditions as Problem 1. Because
of the transient flow conditions, 0 and v, and hence also D
and R in (1) are functions of time and space. At each time
step, f3 and v were obtained by numerically solving the
Richards equation; i.e.,

(42)

where C is the soil water capacity, K is the hydraulic
conductivity, and h is the pressure head. Equation (42) was
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Fig. 5. Concentration distributions computed with the modified
single-step reverse particle tracking method, the single-step reverse
particle tracking method, and the analytical solution for v = 0.5 and
D = 0.2 (Pe = 500).

solved using a mass-lumped linear finite element scheme as
discussed by Kool and van Genuchten [1991].  The soil
hydraulic properties in this equation were given by [van
Genuchten, 1980]

0 - or
Se=-=e _ e [1 + (~lhl)Tm (43)

s I

K = K,S;‘*[l  - (1 - S;‘m)m]2 (44)

where 0, and Bs are the residual and saturated water
contents, respectively, K, is the saturated hydraulic conduc-
tivity, (Y and n are model parameters determined by experi-
mental data, and m = 1 - l/n. The dispersion coefficient in
(1) was computed as [Bear, 1972]

D=A]v]  +007 (45)

where A is the dispersivity of the medium, Do  is the ionic or
molecular diffusion coefficient in free water, and T is a
tortuosity factor. The tortuosity factor was evaluated as a
function of the water content [Millington and Quirk, 1961] as
follows:

$- = 0 10’3/(9,2 (46)

Calculations were obtained for a 300-cm-deep soil profile,
an infiltration rate of 8 cm day-‘,  and the following hydraulic
parameters: n = 1.8, (Y = 0.1 cm-t, 0, = 0.05, 8, = 0.4, Do
= 0, and K, = 10 cm day-‘. The concentration of the input
solution was set at unity. We selected an element size Ax of
1 cm and a relatively small value of 0.04 cm for the
dispersivity A, such that Pe = Ax/h = 25. Numerical results
obtained with the MSRPT and FEM methods are shown in
Figure 6 at times t = 2, 4, 8, and 12 days. To eliminate or
minimize oscillations and numerical dispersion in the FEM
results, we had to further refine the element size. Figure 6
also displays the FEM concentration profiles using the
refined grid (Ax = 0.2 cm, Pe = 5). The profiles obtained
with FEM using the smaller elements (Ax = 0.2 cm) and
MSRPT (Ax = 1 cm) are quite comparable; however, the
FEM method took 25 times more computer time than
MSRPT (approximately 5 hours versus 12 min on a 486 PC).

The MSRPT results in Figure 6 were obtained with an

o MSRPT: Ax = 1

1.21
- FIX:  Ax = 0 . 2
II FEM: Ax = 1

X

Fig. 6. Solute transport simulations at times t = 2, 4, 8, and 12
days for a transient flow field using the modified single-step reverse
particle tracking method (Ax = I), the finite element method with
Ax = 1, and the FEM method assuming a more refined grid
(Ax = 0.2).

element size Ax of 1 cm. However, a much larger element
size is possible with this scheme; this feature may further
increase the computational efficiency of MSRPT relative to
FEM. Figure 7 shows that some numerical dispersion oc-
curred when the element size was increased. This numerical
dispersion may have been caused by the process of choosing
the weighting factors according to the mass balance error.
The mass stored in the profile was calculated by summation
of the element contributions. For smaller elements, the mass
balance should be more accurate at each time step, which
would result in more appropriate values for the weighting
factors. Additionally, changing the element size likely af-
fected the accuracy of the water flow simulation, which in
turn should have impacted the accuracy of the solute trans-
port simulation.

Transport simulations for a variably saturated flow field
were also carried out using a solute flux boundary condition
at the soil surface. The solute dispersivity was now taken as
0.01 cm. We used the simulated FEM results with the refined
elements of Ax = 0.05 cm (Pe = 5) as a standard for

1 . 2

1 - FEM: Ax = 0.2

0.0 1 4L
I I I

0 100 200 300

X

Fig. 7. Effect of element size on numerical results for a transient
flow field obtained with the modified single-step reverse particle
tracking method.
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TABLE 1. Mass Balance Errors (ME) of the Modified Single-
Step Reverse Particle Tracking (MSRPT) Method and

Sum-Squared Errors (E) of the MSRPT and
Finite Element Methods (FEM)

Day

Mass Error, Sum-Squared Sum-Squared
ME, % Error, E Error, E

(MSRPT) (MSRPT) (FEM)

1 -0.0897 1.20 3.15
2 0.0012 0.958 6.58
4 -0.0318 1.45 9.47
5 -0.0126 2.85 12.0
8 -0.0343 12.5 73.7

All parameters used in the simulations were kept the same for the
two methods.

comparison. The sum-squared errors of MSRPT and FEM
with Ax = 0.5 cm (Pe = 50) are compared in Table 1, which
also lists the mass balance errors of the MSRPT scheme at
different times. Notice that they are less than 0.1% for all
simulations. Calculated solute distributions obtained with
the MSRPT, FEM and the refined FEM techniques are
shown in Figure 8 at times of 2, 4, and 8 days. The results in
Table 1 and Figure 8 clearly demonstrate that MSRPT
provides for this example much more accurate results than
the oscillation-prone FEM. While MSRPT yields distribu-
tions which compare closely with those simulated using the
refined FEM, the MSRPT results required about 80 times
less computer time as compared to the refined FEM.

Finally, Figure 9 presents the concentration profiles for a
purely convective transport process (h = 0) in a transient
flow field as simulated with the MSRPT method. As for the
uniform flow field (Figure 3 (top)), MSRPT gives an exact
description of the sharp front without producing any numer-
ical oscillation and artificial dispersion.

CONCLUSIONS

A computationally efficient Eulerian-Lagrangian method
is presented for solving one-dimensional convection-
dispersion problems in steady and transient flow fields.

- FEM: Ax = 0.05
o MSRPT: Ax = 0.5

1.21 * FEM: Ax = 0.5

Fig. 8. Solute transport simulations at times t = 2,4, and 8 days
for a transient flow field using the modified single-step reverse
particle tracking method (Ax = 0.5), the finite element method with
Ax = 0.5, and the FEM method using a more refined grid system (Ax
= 0.05).

1.4

1.2

1 .0

---. water content
- Concentration

Fig. 9. Concentration profiles for a purely convective transport
process simulated with the modified single-step reverse particle
tracking (MSRPT) method at times of t = 2, 4, and 8 days in a
transient flow field.

The relatively simple algorithm is a modification of the
SRPT method. The method employs two weighting
factors to control the particle tracking process. One weight-
ing factor greater than unity is used in the upstream
region, and another less than unity is used in the downstream
region. The two weighting factors approach unity for
dispersion-dominated problems, in which case MSRPT be-
comes the traditional SRPT method. A relatively pragmatic
approach was followed by relating the weighting factors
to the grid Peclet and Courant numbers by means of empir-
ical equations. The weighting factors for transient flow
fields were selected using an automatically adjustable pro-
cedure which minimizes mass balance errors at each time
step.

Several problems were used to compare the MSRPT
predictions against available analytical solutions and numer-
ical results obtained with a linear finite element method
assuming a more refined grid system. Results indicate that
MSRPT is effective and accurate for a variety of problems.
The method can handle solute transport problems over the
entire range of Peclet numbers form zero to infinity for both
steady and transient flow fields.

The MSRPT scheme was found to eliminate numerical
oscillations and to reduce or virtually eliminate numerical
dispersion in comparison to the finite element method, the
single-step reverse particle tracking technique, and the up-
stream weighted method. MSRPT also dramatically reduced
computational times as compared to the finite element
method with a refined grid system. The MSRPT method
appears especially useful for convection-dominated trans-
port problems. The algorithm in this paper was formulated
for one-dimensional problems and is currently limited to grid
Courant numbers less than or equal to 1. Further research is
being carried out to extend the MSRPT concept to problems
with larger Courant numbers and multidimensional flow
fields.
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